SWAMI VIVEKANAND ACADEMY

Chak chariya, Majhawa, Kachhawa, Mirzapur Class - XII - Chemistry -Test Paper - Date: 25.12.2019

General Instructions:

- (i) All questions are compulsory.
- (ii) This question paper contains 37 questions.
- (iii) Questions 1 20 in Section A are objective type-very short answer type questions carrying 1 mark each.
- (iv) Questions 21 27 in Section B are short answer type questions carrying 2 marks each.
- (v) Questions 28 34 in Section C are long-answer I type questions carrying 3 marks each.
- (vi) Questions 35 37 in Section D are long-answer II type questions carrying 5 marks each.
- (vii) 33% internal choices have been given in each section.

Section 'A'

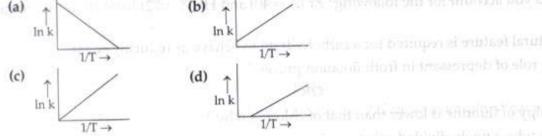
- 1. The values of colligative properties of colloidal solution are of small order in comparison to those shown by true solutions of same concentration because of colloidal particles.
 - (a) exhibit enormous surface area.
 - (b) remain suspended in the dispersion medium.
 - (c) form lyophilic colloids.
 - (d) are comparatively less in number.

-

- When 0.1 mol CoCl₃(NH₃)₅ is treated with excess of AgNO₃, 0.2 mol of AgCl are obtained. The
 conductivity of solution will correspond to
 - (a) 1:3 electrolyte.
 - **(b)** 1:2 electrolyte.
 - (c) 1:1 electrolyte.
 - (d) 3:1 electrolyte.

OR

The electronic configuration of Cu(II) is $3d^9$ whereas that of Cu(I) is $3d^{10}$. Which of the following is correct?


- (a) Cu(II) is more stable
- (b) Cu(II) is less stable
- (c) Cu(I) and Cu(II) are equally stable
- (d) Stability of Cu(I) and Cu(II) depends on nature of copper salts

1

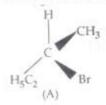
1

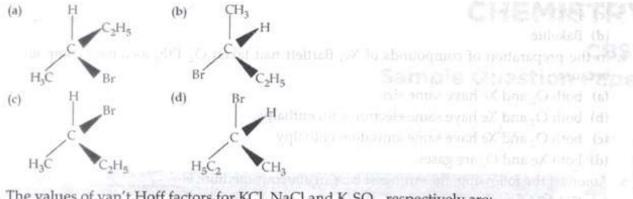
- AI 3. The commercial name of polyacrylonitrile is ______
 - (a) Dacron
 - (b) Orlon (acrilan)

(c) PVC					
(A) Rakelite					1
4. In the preparation of compounds of Xe, Bartle because	ett had take	n O_2^+ Pt F_6^- as	a base cor	npound. Th	nis is
(a) both O ₂ and Xe have same size.					
(b) both O ₂ and Xe have same electron gain er	nthalpy.				
(c) both O ₂ and Xe have same ionisation enthal	alpy.				
(d) both Xe and O ₂ are gases.	100				1
5 Amongst the following, the strongest base in a	queous med	ium is			
(a) CH ₃ NH ₂ were qualified as a Cot of terms	or KCl, Naci		es of van't		
(b) NCCH ₂ NH ₂					
(c) (CH ₃) ₂ NH					
(d) C ₆ H ₅ NHCH ₃	*				1
O.	R		and br		
Chloromethane on treatment with excess of art (a) N, N-Dimethylmethanamine (CH ₃ — N	nmonia yielo CH ₃ CH ₃₎				
(b) N-methylmethanamine (CH ₃ - NH - C	H ₃)				
(c) Methanamine (CH ₃ NH ₂)	EH				
(d) Mixture containing all these in equal prop	ortion			Critical	1
6. Which of the following compounds will react	with sodium	hydroxide so	lution in v	vater?	
(a) C ₆ H ₅ OH					
(b) C ₆ H ₅ CH ₂ OH					
(c) (CH ₃) ₃ COH					
(A) C H OH				⁷ 14 (P)	1
 According to Arrhenius equation rate constant represent the graph of: ln k versus 1/T 					
(a) (b) 1		nisht inthici			

8.
$$\Lambda^0_{m(NH_4OH)}$$
 is equal to

(a)
$$\Lambda^{0}_{m(NH_{4}OH)} + \Lambda^{0}_{m(NH_{4}CI)} - \Lambda^{0}_{(HCI)}$$


(b)
$$\Lambda^0_{m(NH_4Cl)} + \Lambda^0_{m(NaOH)} - \Lambda^0_{(NaCl)}$$


(c)
$$\Lambda_{m(NH_kCI)}^0 + \Lambda_{m(NaCI)}^0 - \Lambda_{(NaOH)}^0$$

(d)
$$\Lambda^0_{m(NaCH)} + \Lambda^0_{m(NaCI)} - \Lambda^0_{(NH_4CI)}$$

9. Which of the following structures is enantiomeric with the molecule (A) given below?

1

- 10. The values of van't Hoff factors for KCl, NaCl and K2SO4, respectively are:
 - (a) 2, 2 and 2
 - (b) 2, 2 and 3
 - (c) 1, 1 and 2
 - (d) 1, 1 and 1

On the basis of data given below predict which of the following gases shows least adsorption on a definite amount off charcoal?

Which of the following foragounds will part with sodium avelrance

1

1

1

1

1

1

1

1

1

1

1

1

1

Gas	CO ₂	SO ₂	CH ₄	H ₂	
Critical	304	630	190	33	

- (a) CH,
- (b) SO,
- (c) CH₄
- (d) H,

All 11. What is meant by narrow spectrum antibiotics?

- 12. Write the difference between DNA and RNA.
- 13. How would you account for the following? Zr (Z = 40) and Hf (Z = 72) have almost identical radii.
- 14. What structural feature is required for a carbohydrate to behave as reducing sugar? 1
- 15. What is the role of depressant in froth flotation process?

OR

Bond enthalpy of fluorine is lower than that of chlorine why?

Give reason why a finely divided substance is more effective as an adsorbent.

Why a mixture of Carbon disulphide and acetone shows positive deviation from Raoult's law? 1

17. Write IUPAC name of:

OR

Write the structure of 3-Bromo-2-methylprop-1-ene.

- **AI** 18. Why does the rate of a reaction increase with rise in temperature?
 - 19. Which one of the following compounds is more easily hydrolyzed by KOH and why? CH3CHCICH2CH3 Or CH3CH2CH2CI
 - 20. For which type of reactions, order and molecularity have the same value?

Section 'B'

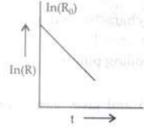
21. Although chlorine is an electron withdrawing group, yet it is ortho-, para-directing in electrophilic aromatic substitution reactions. Explain why it is so?

OR

Give reasons: " " "manth ath winders menty" stambers many and to comparate and atheir representations.

- (i) Aniline is a weaker base than cyclohexylamine.
- (ii) It is difficult to prepare pure amines by ammonolysis of alkyl halides.

2


- 22. Complete the following chemical equation:
 - (i) $MnO_4^-(aq) + S_2O_3^{2-}(aq) + H_2O(l)$
 - (ii) $Cr_2O_7^{2-}(aq) + Fe^{2+}(aq) + H^+(aq)$

2

23. What does the negative sign in the expression, $\frac{Z_n}{Z_n^{+2}} = -0.76V$ mean?

2

24. For a chemical reaction $R \rightarrow P$, variation in $\ln [R]$ vs time (t) plot is given below:

For this reaction: 1000 HO HO

- (i) Predict the order of reaction.

2

- 25. Explain the significance of leaching in the extraction of aluminium.
- 2
- 26. Give reasons for the following observations: http://www.index.org/and/ord-
 - (i) Leather gets hardened after tanning.
 - (ii) It is necessary to remove CO when ammonia is prepared by Haber's process.

2

AI 27. Explain the following terms:

- (i) Rate constant (k)
- (ii) Half-life period of reaction (t_{1/2}).

2

36. 10 Give two reactions that show the scotto AO menut humans.

What is meant by positive deviations from Raoult's law? Give an example. What is the sign of $\Delta_{mix}H$ for positive deviation?

35. Gl. Arradge the following compounds in the increase against at

Section 'C'

- 28. Give reasons:
 - (i) n-Butyl bromide has higher boiling point than t-butyl bromide.
 - (ii) Racemic mixture is optically active.
 - (iii) The presence of nitro group (-NO₂) at o/p positions increases the reactivity of haloarenes towards nucleophilic substitution reactions.
- 29. Two reactions of the same order have equal pre-exponential factors but their activation energies differ by 24.9 kJ mol⁻¹. Calculate the ratio between the rate constants of these reactions at 27°C. (Gas constant, R = 8.314 JK⁻¹ mol⁻¹).

OR The chemical reaction involved of

Calculate the boiling point of solution when 2g of Na_2SO_4 (M=142~g mol $^{-1}$) was dissolved in 50~g of water, assuming Na_2SO_4 undergoes complete ionization.

	30		te the therapeutic action of following on human body and mention the class of drugs to which h of these belong:
		(i)	Equanil
		(ii)	Aspirin
		(iii)	Chloramphenicol 3
1	AI)3	1. Wri	te the structures of the main products when benzene diazonium chloride reacts with the
			owing reagents:
		(a)	CuCN seebilart testa to sagate our may be a minimum and an interpretation of the state of the
		(b)	CH ₃ CH ₂ OH
		(c)	Cu/HCl
			OR (na) *sel + (na) *sel + (na) *till - (la)
		Ho	w do you convert the following:
			Phenol to anisole was varied and anisole was a superior and magne and any of any branch and a second and any of the superior and anisole was a superior and any of the superior and anisole was a superior and any of the supe
			Propan=2-ol to 2-methylpropan=2-ol
			Aniline to phenol
	3		the complex ion [CoF ₆] ³⁻ write the hybridization type, magnetic character and spin nature.
			omic number: Co = 27]
	3		Arrange the following compounds in the increasing order of their boiling points :
			CH ₃ CHO, CH ₃ CH ₂ OH, CH ₃ OCH ₃ , CH ₃ COOH
		(ii)	Arrange the following in decreasing order of their acidic strength and give reason for your
		(44)	answer.
			CH ₃ CH ₂ OH, CH ₃ COOH, CICH ₂ COOH, FCH ₂ COOH, C ₆ H ₅ CH ₂ COOH.
	3	4 (i)	Account for the following:
	2		Transition metals form large number of complex compounds.
		(b)	The lowest oxide of transition metal is basic whereas the highest oxide is amphoteric or acidic.
			E° value for the Mn^{3+}/Mn^{2+} couple is highly positive (+1.57 V) as compared to Cr^{3+}/Cr^{2+} .
		(c)	national soft the term / term couple is ringing posture (1 to 5 1/40 conspicuo to 61 / 51 / 51 / 51 / 51 / 51 / 51 / 51 /
	S	ectio	on 'D'
	3	me	w can you remove the hard calcium carbonate layer of the egg without damaging its semipermeable embrane? Can this egg be inserted into a bottle with a narrow neck without distorting its shape? plain the process involved.
	3		Give two reactions that show the acidic nature of phenol. Compare acidity of phenol with that
	11.5	10 10 1	Veltar Repeared by positive deviations are all and a state of the area of the state
	4	(ii)	Alcohols react with active metals e.g. Na, K, etc. to give corresponding alkoxides. Write down the
			decreasing order of reactivity of sodium metal towards primary, secondary and tertiary alcohols.
			. J norder 5
			OR SERVICE SER
		(i)	Distinguish between:
			(a) C ₆ H ₅ – COCH ₃ and C ₆ H ₅ – CHO, (b) CH ₃ COOH and HCOOH.
		(ii)	Arrange the following in the increasing order of their boiling points :
			CH ₃ CHO, CH ₃ COOH, CH ₃ CH ₂ OH.
		(iii	Arrange the following in the increasing order of their reactivity towards nucleophilic addition
			C ₆ H ₅ COCH ₃ , CH ₃ – CHO, CH ₃ COCH ₃
		(iv) Write the chemical reaction involved in Wolff-Kishner reduction.
	3	13.	Using valence bond theory explain the geometry and magnetic behaviour by $[Cr(NH_3)_6]^{3+}$.
			(At no. Cr = 24)

- (ii) Write the IUPAC name of ionization isomer of [Ni(NH₃)₃NO₃]Cl.
- (iii) Specify the oxidation numbers of the metals in the the following coordination entities:
 - (a) $[Co(H_2O)(CN)(en)_2]^{2+}$
- (b) $[CoBr_2(en)_2]^+$

5

OR

The elements of 3d transition series are given as:

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Answer the following:

- (i) Write the element which is not regarded as a transition element. Give reason.
- (ii) Which element has the highest m.p.?
- (iii) Write the element which can show an oxidation state of + 1.
- (iv) Which element is a strong oxidizing agent in + 3 oxidation state and why?

5